Processing math: 100%
Subalgebra A351E16
16 out of 119
Computations done by the calculator project.

Subalgebra type: A351 (click on type for detailed printout).
Centralizer: A11 .
The semisimple part of the centralizer of the semisimple part of my centralizer: A15
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1, 0, 0)
Contained up to conjugation as a direct summand of: A351+A11 .

Elements Cartan subalgebra scaled to act by two by components: A351: (8, 10, 14, 19, 14, 8): 70
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g1+g6+g13+g14+g15
Positive simple generators: 9g15+5g14+5g13+8g6+8g1
Cartan symmetric matrix: (2/35)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (70)
Decomposition of ambient Lie algebra: V10ω12V9ω1V8ω1V6ω12V5ω1V4ω12V3ω1V2ω13V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V9ω1+2ψV10ω1V8ω1V5ω1+2ψV9ω12ψV6ω1V3ω1+2ψV4ψV4ω1V5ω12ψV2ω1V3ω12ψV0V4ψ
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 14) ; the vectors are over the primal subalgebra.g4h4g4g15+5/9g14+5/9g13+8/9g6+8/9g1g19+8/5g11+8/5g7g238/5g16+8/5g12g21+5/9g20g18+5/9g17g25+g22g28+g26g31g29+8/5g24g33+g32g34g35g36
weight0002ω13ω13ω14ω15ω15ω16ω18ω19ω19ω110ω1
weights rel. to Cartan of (centralizer+semisimple s.a.). 4ψ04ψ2ω13ω12ψ3ω1+2ψ4ω15ω12ψ5ω1+2ψ6ω18ω19ω12ψ9ω1+2ψ10ω1
Isotypic module decomposition over primal subalgebra (total 14 isotypic components).
Isotypical components + highest weightV4ψ → (0, -4)V0 → (0, 0)V4ψ → (0, 4)V2ω1 → (2, 0)V3ω12ψ → (3, -2)V3ω1+2ψ → (3, 2)V4ω1 → (4, 0)V5ω12ψ → (5, -2)V5ω1+2ψ → (5, 2)V6ω1 → (6, 0)V8ω1 → (8, 0)V9ω12ψ → (9, -2)V9ω1+2ψ → (9, 2)V10ω1 → (10, 0)
Module label W1W2W3W4W5W6W7W8W9W10W11W12W13W14
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g4
Cartan of centralizer component.
h4
g4
Semisimple subalgebra component.
9/8g155/8g145/8g13g6g1
h6+7/4h5+19/8h4+7/4h3+5/4h2+h1
1/4g1+1/4g6+1/4g13+1/4g14+1/4g15
g19+8/5g11+8/5g7
3/5g5+3/5g3g2
6/5g82/5g92/5g10
2/5g122/5g162/5g23
g238/5g16+8/5g12
3/5g10+3/5g9g8
6/5g2+2/5g32/5g5
2/5g72/5g112/5g19
g21+5/9g20g18+5/9g17
5/9g14+5/9g134/9g6+4/9g1
4/9h6+5/9h55/9h34/9h1
1/3g1+1/3g62/3g13+2/3g14
1/3g171/3g18+1/3g201/3g21
g25+g22
g11g7
g5g3
g9g10
g12g16
g26+g28
g28+g26
g16+g12
g10+g9
g3+g5
g7+g11
g22g25
g31g29+8/5g24
3/5g21g203/5g18+g17
6/5g15+g14+g132/5g62/5g1
2/5h6+1/5h54/5h4+1/5h32h2+2/5h1
3/5g1+3/5g612/5g1312/5g14+8/5g15
3g17g183g20+g21
2g24+2g29+2g31
g33+g32
g31g29
g21+g20+g18+g17
g14+g13+2g62g1
2h6+h5h3+2h1
5g15g64g13+4g14
9g17+5g18+9g20+5g21
14g2914g31
14g32+14g33
g34
g27
g25+g22
2g19g11g7
3g53g32g2
6g85g95g10
5g125g16+16g23
21g26+21g28
42g30
42g35
g35
g30
g28+g26
2g23g16+g12
3g10+3g9+2g8
6g25g3+5g5
5g7+5g1116g19
21g2221g25
42g27
42g34
g36
g33+g32
g31g292g24
3g21g20+3g18+g17
6g15+g14+g134g64g1
4h67h58h47h32h2+4h1
15g1+15g66g136g1420g15
21g17+35g1821g2035g21
70g24+56g29+56g31
126g32126g33
252g36
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above0002ω1
0
2ω1
3ω1
ω1
ω1
3ω1
3ω1
ω1
ω1
3ω1
4ω1
2ω1
0
2ω1
4ω1
5ω1
3ω1
ω1
ω1
3ω1
5ω1
5ω1
3ω1
ω1
ω1
3ω1
5ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
9ω1
7ω1
5ω1
3ω1
ω1
ω1
3ω1
5ω1
7ω1
9ω1
9ω1
7ω1
5ω1
3ω1
ω1
ω1
3ω1
5ω1
7ω1
9ω1
10ω1
8ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
10ω1
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer4ψ04ψ2ω1
0
2ω1
3ω12ψ
ω12ψ
ω12ψ
3ω12ψ
3ω1+2ψ
ω1+2ψ
ω1+2ψ
3ω1+2ψ
4ω1
2ω1
0
2ω1
4ω1
5ω12ψ
3ω12ψ
ω12ψ
ω12ψ
3ω12ψ
5ω12ψ
5ω1+2ψ
3ω1+2ψ
ω1+2ψ
ω1+2ψ
3ω1+2ψ
5ω1+2ψ
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
9ω12ψ
7ω12ψ
5ω12ψ
3ω12ψ
ω12ψ
ω12ψ
3ω12ψ
5ω12ψ
7ω12ψ
9ω12ψ
9ω1+2ψ
7ω1+2ψ
5ω1+2ψ
3ω1+2ψ
ω1+2ψ
ω1+2ψ
3ω1+2ψ
5ω1+2ψ
7ω1+2ψ
9ω1+2ψ
10ω1
8ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
10ω1
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M4ψM0M4ψM2ω1M0M2ω1M3ω12ψMω12ψMω12ψM3ω12ψM3ω1+2ψMω1+2ψMω1+2ψM3ω1+2ψM4ω1M2ω1M0M2ω1M4ω1M5ω12ψM3ω12ψMω12ψMω12ψM3ω12ψM5ω12ψM5ω1+2ψM3ω1+2ψMω1+2ψMω1+2ψM3ω1+2ψM5ω1+2ψM6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1M9ω12ψM7ω12ψM5ω12ψM3ω12ψMω12ψMω12ψM3ω12ψM5ω12ψM7ω12ψM9ω12ψM9ω1+2ψM7ω1+2ψM5ω1+2ψM3ω1+2ψMω1+2ψMω1+2ψM3ω1+2ψM5ω1+2ψM7ω1+2ψM9ω1+2ψM10ω1M8ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1M10ω1
Isotypic characterM4ψM0M4ψM2ω1M0M2ω1M3ω12ψMω12ψMω12ψM3ω12ψM3ω1+2ψMω1+2ψMω1+2ψM3ω1+2ψM4ω1M2ω1M0M2ω1M4ω1M5ω12ψM3ω12ψMω12ψMω12ψM3ω12ψM5ω12ψM5ω1+2ψM3ω1+2ψMω1+2ψMω1+2ψM3ω1+2ψM5ω1+2ψM6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1M9ω12ψM7ω12ψM5ω12ψM3ω12ψMω12ψMω12ψM3ω12ψM5ω12ψM7ω12ψM9ω12ψM9ω1+2ψM7ω1+2ψM5ω1+2ψM3ω1+2ψMω1+2ψMω1+2ψM3ω1+2ψM5ω1+2ψM7ω1+2ψM9ω1+2ψM10ω1M8ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1M10ω1

Semisimple subalgebra: W_{4}
Centralizer extension: W_{1}+W_{2}+W_{3}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00)
(0.00, 1.00)
0: (1.00, 0.00): (1950.00, 300.00)
1: (0.00, 1.00): (200.00, 312.50)



Made total 59553 arithmetic operations while solving the Serre relations polynomial system.